Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kinkini Bhattacharyya, ${ }^{\text {a }}$ Tanusree Kar, ${ }^{\mathbf{a} *}$ Gabriele Bocelli, ${ }^{\text {b }}$ Lara
Righi, ${ }^{\text {c }}$ Yenamandra
Venkateswarlu ${ }^{\text {c }}$ and V. L. Niranjan Reddy ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, ${ }^{\text {b }}$ Centro di Studio per la Strutturistica Diffractometrica del CNR, Viale
delle Scienze, Palazzo Chimico I-43100, Parma, Italy, and ${ }^{\text {c }}$ Natural Products Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail:
mstk@mahendra.iacs.res.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.158$
Data-to-parameter ratio $=9.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Fern-9(11)-en-6a-ol-methanol (1/1)

The title compound, $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O} \cdot \mathrm{CH}_{4} \mathrm{O}$, is a triterpenoid. It consists of four six-membered rings and one five-membered ring. Of the four six-membered rings, two adopt the chair conformation, one is in the twist-boat conformation and the one containing a double bond is in a distorted chair conformation with distortion towards the boat conformation. The five-membered ring adopts the pure envelope conformation. There is a hydrogen bond between the O atom of the hydroxyl group at C 6 and the O atom of the solvent molecule, but no other intermolecular hydrogen bonds exist in the structure, so it is stabilized by van der Waals interactions only.

Comment

The title compound, (I), has been isolated from the whole plant of Adiantum lunuatum L. (Adiantaceae) which is a common fern and used as an ornamental plant in Japan, Europe and widely distributed in India. The dried whole plant has been used as a medicine for bronchitis and cough (Hashimoto \& Nishimoto, 1996). Isolation of this compound has also been reported by another group (Sunder et al., 1976). Spectroscopic analysis suggests that the compound is closely related to a derivative of fern-9(11)-ene, but there is an ambiguity regarding the position of the hydroxyl group which is located at C6. So to establish the structure unequivocally the present X-ray structural analysis of the title compound has been undertaken, which confirms the structure obtained by chemical and spectroscopic studies.

The data set does not contain any Friedel opposites, and the value of the Flack (1983) parameter obtained is inadequate to indicate the absolute configuration. However, the absolute stereochemistry of a related triterpenoid has been established by Oh \& Maslen (1966) by a direct method of anomalous dispersion phasing and the present structure is in accord with this. Hence the present enantiomer has been retained.

The molecule is composed of five fused rings, four of which are six-membered and one is five-membered. Rings $A(\mathrm{C} 1-\mathrm{C} 5 /$ C 10) and D (C13-C18) adopt a chair conformation (see

Received 8 January 2001
Accepted 31 January 2001
Online 13 February 2001

Figure 1
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Table 2), ring B (C5-C9/C10) is in a twist boat conformation, ring $C(\mathrm{C} 8-\mathrm{C} 14)$ containing a double bond is in a distorted chair conformation and the five-membered ring E (C17-C21) adopts an envelope conformation. The conformation of a chair in ring A followed by a boat in ring B is unusual but also observed in the pentacyclo triterpenoid (Parvez et al., 1999). This configuration seems to have arisen from the coplanarity of atoms $\mathrm{C} 8-\mathrm{C} 12$ due to the double bond at $\mathrm{C} 9=\mathrm{C} 11$. The relevant torsion angles are $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12-0.3(5)^{\circ}$ and $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12177.4$ (3) ${ }^{\circ}$. In ring C, atoms C8, C9, C13 and C14 are only approximately coplanar, with deviations of up to 0.238 (3) \AA from their mean plane. Atom C 8 is 0.526 (3) \AA above this plane and atom C 12 is 0.481 (3) \AA below it. Hence it is inferred that the conformation of ring C is intermediate between a chair and a twist boat, with a ring puckering parameter $\varphi=95.1$ (4) ${ }^{\circ}$. The ring-puckering parameters (Table 2) were calculated using the method of Cremer \& Pople (1975). The hydroxyl group at C6 is twisted from the plane of the ring B. The associated torsion angles are $\mathrm{C} 10-$ $\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1-143.6$ (2) ${ }^{\circ}$ and $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{O} 181.4$ (3) ${ }^{\circ}$.

The Csp ${ }^{3}-\mathrm{Csp} p^{3}$ bond lengths lie between 1.519 (6) and 1.571 (4) \AA. The variation in bond length indicates that the structure is subject to certain strain which mainly arises from the repulsion of the methyl groups at C25 and C27 and also from the constraint placed on $\mathrm{C} 8-\mathrm{C} 12$ to lie in one plane due to the presence of a double bond at $\mathrm{C} 9=\mathrm{C} 11$. Repulsion between two methyl groups C25 and C27 is evident in that the angles $\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 25 \quad 112.3(2)^{\circ}$ and $\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 27$ $115.3(2)^{\circ}$ are much larger than the normal tetrahedral value of 109.5° formed by pairs of $\mathrm{Csp} p^{3}-\mathrm{C} s p^{3}$ bonds. $\mathrm{C} s p^{3}-\mathrm{Cs} p^{2}$ bond lengths lie between 1.502 (5) and 1.546 (3) \AA. . In the molecule (Fig. 1), there is one endocyclic double bond $\mathrm{C} 9=\mathrm{C} 11$ and one $\mathrm{Csp}{ }^{3}-\mathrm{O}$ bond, indicated by the bond lengths 1.331 (4) and 1.451 (3) \AA, respectively. All these values are within expected ranges.

The O1S atom of the methanol solvent molecule is connected to the main molecule through a hydrogen bond
with the O atom of the hydroxyl group: $\mathrm{O} 1 S-\mathrm{H} 1 \mathrm{OS} \cdots \mathrm{O} 1$, with O1S $\cdots \mathrm{O} 12.781$ (4) \AA and O1S-H1OS $\cdots \mathrm{O} 1173.2(2)^{\circ}$. There are no other intermolecular hydrogen bonds and the structure is stabilized by van der Waals interactions.

Experimental

The shade-dried and powdered whole plant (1.25 kg) of Adiantum lunulatum was extracted with hexane (3×51) followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(1: 1)(3 \times 5 \mathrm{l})$ at room temperature. The combined hexane extract was filtered and concentrated under pressure to obtain a greenish gummy residue (16.41 g). Silica gel column chromatography by gradient elution using hexane through hexane/benzene mixtures to benzene afforded the compound fern- $9(11)$-en- 6α-ol (120 mg). Crystals of the title compound were then obtained from a solution in methanol by slow evaporation at room temperature. The extraction procedure is described by Niranjan Reddy et al. (2001).

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{OH} \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=458.74$
Monoclinic, $P 2_{1}$
$a=11.505$ (3) A
$b=8.484(2) \AA$
$c=14.616$ (4) \AA
$\beta=99.42$ (3) ${ }^{\circ}$
$V=1407.4$ (6) \AA^{3}
$Z=2$
$D_{x}=1.083 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 39 reflections
$\theta=11.1-36.7^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.19 \times 0.14 \times 0.11 \mathrm{~mm}$

Data collection

Siemens AED single-crystal diffractometer
$\omega-2 \theta$ scans
Absorption correction: refdelf
DIFABS (Walker \& Stuart, 1983) and Gluzinski (1989)
$T_{\text {min }}=0.92, T_{\text {max }}=0.95$
5337 measured reflections
2865 independent reflections

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=0.007$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.158$
$S=1.12$
2865 reflections
310 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1072 P)^{2}\right.$
$+0.1153 P]$
where $P=\left(F_{o}^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 6-\mathrm{O} 1$	$1.451(3)$		
$\mathrm{C} 9-\mathrm{C} 11$	$1.331(4)$		$116.9(2)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$108.8(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$125.5(2)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$107.0(2)$	$\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12$	$112.3(2)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$120.7(2)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 25$	$115.3(2)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$122.4(2)$	$\mathrm{C} 27-\mathrm{C} 17-\mathrm{C} 18$	
			$-0.2(5)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-143.6(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12$	$177.4(3)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$81.4(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12$	

Table 2
Ring-puckering parameters $\left(\AA,{ }^{\circ}\right)$.

Ring	q_{2}	q_{3}	Q_{T}	θ
A	$0.037(4)$	$0.562(4)$	$0.563(4)$	$3.7(4)$
B	$0.758(3)$	$-0.027(3)$	$0.758(3)$	$92.0(2)$
C	$0.417(3)$	$-0.355(3)$	$0.548(3)$	$130.4(3)$
D	$0.038(3)$	$0.563(3)$	$0.564(3)$	$3.9(3)$
E	$0.490(3)$			

Methyl and hydroxy H atoms were placed in ideal positions according to difference-map calculations and were allowed torsional freedom, with $U(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C}$ or O$)$. The remaining H atoms were included at geometrically calculated positions and allowed to ride on their parent atoms with $U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: local program (Belletti et al., 1992); cell refinement: local program; data reduction: local program; program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Huttner, 1994); software used to prepare material for publication: SHELXL97 and PARST (Nardeli, 1983).

References

Belletti, D., Cantoni, A. \& Pasquinelli, G. (1992). Gestone on Line di Diffratometro a Cristallo Singolo Siemens AED con PC. Internal report 1/ 92. Centro di Studio per la Strutturistica Diffratometrica CNR.

Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. \& Camalli, M. (1996). Acta Cryst. A52, C-79.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gluzinski, P. (1989). Programs for X-ray Structure Calculation. Icho, Polish Academy of Sciences, Warszawa, Poland.
Hashimoto, G. \& Nishimoto, Y. (1996). Illustrated Cyclopedia of Brazilian Medicinal Plants, p. 5. Aboc-sha, Kanagawa.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Niranjan Reddy, V. L., Ravikanth, V., Prabhakar Rao, T., Diwan, P. V. \& Venkateswarlu, Y. (2001). Phytochemistry, 56, 173-175.
Oh, Yow-Lam \& Maslen, E. N. (1966). Acta Cryst. 20, 852-864.
Parvez, M., Gul, W., Yousaf, M., Choudhury, I., Rahman, A. \& Khan, M. R. (1999). Acta Cryst. C55, 213-215.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sunder, R., Ayengar, K. N. N. \& Rangaswami, S. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 117-121.
Walker, N. \& Stuart. D. (1983). Acta Cryst. A39, 158-166.
Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg, Germany.

[^0]: (C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

